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Shuttle Contamination Modeling: The Plasma
Wave Field of Spacecraft

I. INTRODUCTION

Shuttle and other low altitude Earth orbit spacecraft move through a medium

that is characterized by a neutral number density of about 109 cm 3 and an ion den- %

4 5 -3 %sity of 10 10 cm Typical collisional mean-free paths are on the order of- "N..>

kilometers or greater, precluding a strong collisional interaction with the space- *. -.

craft which would produce collision-dominated waves and shocks. The long mean- e

free paths also mean that the interaction between the ambient ions and neutrals is
weak on the scale of kilometers, so that the ions may be treated as a collisionless

plasma on this scale. Typical temperatures at shuttle altitude are on the order of

1000 K, so that the electron thermal speed is on the order of 100km/sec, about

an order of magnitude less than the Alfven speed. As a result, the plasma may be

treated in the cold plasma approximation. A spacecraft moving through such a
cold, collisionless plasma can be expected to produce waves and shocks or shock

like structures.

Typical phase and group velocities of cold plasma waves are on the order of
the Alfven speed. As such, shock waves could be regarded as unlikely, because .-

the spacecraft velocity is a few kilometers per second, quite small compared to

(Received for publication 13 November 1985) - . "
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the wave speeds. However, cold plasma waves range from almost isotropic to

quite anisotropic. For some wave modes, the phase or group velocity goes to

zero in certain directions with respect to the background geomagnetic field. 1, 2 -

The possibility exists that these modes can be shocked by any spacecraft velocity, '

no matter how small, a b r a lr r e s d t c

The interaction between spacecraft and the ambient plasma has been investi-

gated by Drell et al 3 and by Barnett and Olbert. Drell et al showed that space-

craft could produce Alfven wings, a steady Alfven disturbance extending away from

the spacecraft. Barnett and Olbert have recently extended the analysis to include

all plasma waves, although a written report is not yet available.

The purpose of the present paper is to describe the wave and shock structure

of a spacecraft moving through a collisionle.3s cold plasma. The focus of the work

will be the spatial properties of those waves, produced by the interaction of the

spacecraft with the ambient plasma, which can propagate to great distances from

the spacecraft and can form shock-like disturbances. These waves, unlike waves

which propagate isotropically, can propagate only within sharply defined spatial

regions. Our methods lead to definite predictions for (1) the frequencies of waves

which can propagate to large distances from the spacecraft, (2) the directions

within which they can propagate. (3) the wave power spectrum around the space-

craft, and (4) predictions of shock-like disturbances.

An important restriction of our results should be mentioned here. We use

essentially two-dimensional methods throughout. The formalism involved in the

three-dimensional problem is sufficiently complicated that, without the two-dimen-

sional formulation as introduction, the results are essentially unreadable. Quali-

tatively, a two-dimensional treatment is no great impediment. The typical proper-

ties, exemplified by the characteristics, are similar in three dimensions. How-

ever, the quantitative details should be regarded and used with a certain amount of

discretion; the details can be expected to change in three dimensions.

One motive for this work is to begin a fundamental investigation of the inter-

action of spacecraft with the plasma environment. Such an investigation is neces-

sary to treat a wide range of issues, some of traditional importance, some newly

1. Stix, T.H. (1962) The Theory of Plasma Waves, McGraw-Hill, New York.

2. Musielak, Z.E. (1984) M.I.T. Center for Space Research Report No.
CSR -TR -84-3.

3. Drell, S. D., Foley, H. M., and Ruderman, M. A. (1965) Drag and propulsion
,_,f l:.rpe satellites in the ionosphere: An Alfven propulsion engine in space,
J. Geophys. Res. 70:3131.

4. Barnet, A. . and Olbert, S. (1985) Radiation of plasma waves by a conducting
body moving throueh a magnetized plasma, submitted to J. Geophys. Res.
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%
emerging. These issues can be broadly claa sed under two main headings: space- %

craft charging and spacecraft contamination.

Spacecraft charging issues include charging of the spacecraft itself, wake

formation, and densitv enhancements in ram. These are all affected, at least in

principle, by plasma waves and turbulence. A particularly pressing issue is the

interaction of the wake with waves and turbulence and the consequent effect on

charging.

Spacecraft contamination issues include spacecraft glow, ionization of high

density contaminants of spacecraft origin, and, possibly, extended plasma radia-

tion processes. While the present work cannot hope to address all of these topics, -'

it should at least provide the basis for addressing several of them, including ef-

fects of' waves on charging and the evolution of plasma clouds.

A m.cond motive for this work is to provide the mathematical and physical ba-

is fo r mtodeling of the spacecraft interaction. Current efforts are largely limited

to purely numerical work (for example, the NASCAP and POLAR codes) because . -

of the intra et ability of the physics as well as the complications arising from the

V(ometrv of real spacecraft. These codes are typically unwieldy and limited by

the implit% in,, aissumptions necessary to produce a computer program that runs in

;i finite 1'iigth of time. If one contemplates, as we do, computer modeling of a

wide range of spacecraft interactions, including charging, contamination, surface

chemistry, chemical reactions, molecular transport, ionization processes, and

the formation of plasma waves and turbulence, while perhaps including the effects

of charged particle beams, the probability of success with a purely numerical ap-

proach appears to be negligible; the reason one cannot see the light at the end of

the tunnel is because there is no end to the tunnel. The approach that we advocate,

and that has had reasonable success in the development of the NASCAP and POLAR

codes, is to reduce each part of the problem to manageable proportions using ana-

lytical techniques where possible. This paper, we hope, represents a contribution ...

to that process. " '- "

In the following sections, we will treat cold plasma waves in a homogeneous

medium directly from the point of view of the governing differential equations.

From the equations, we will determine the characteristics that govern wave prop-

agation and show that there are three different frequency domains in which waves

can propagate to large distances from the spacecraft. The propagation of discon-

tinuities is discussed in terms of and related to the characteristics. The relation

between cold plasma resonances and the characteristics of the differential equa-

tions is pointed out, and a physical picture of the characteristics as carriers of

discontinuities is developed from the plane wave picture. Solutions of the cold

plasma equations appropriate for localized disturbances are then determined ana-

3
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lytically; they provide a prediction of the power spectrum of fluctuations far from

the spacecraft. Finally, applications to the spacecraft environment are discussed.

2. COLD PLASMA WAVES

The treatment of plasma waves begins with a standard approach to the prob-

lem. We include it to establish approach and notation. The aim is to write partial

differential equations governing waves in a cold plasma. In particular, we shall

reduce the problem to a fourth order partial differential equation for a magnetic

field fluctuation.

The linearized cold plasma equation of motion is

ata + e/a6 (e.,/m.c6"70t x (1B"- ..

where a indicates the species of particle ece is its charge, maj its mass, 6Vea is

the bulk velocity of the species, 6E is the electric field, 6 indicates fluctuating

quantities, and c is the speed of light. The solution for 6V with a harmonic time
dependence. O/Ot -iti, is -..-- '

2
6V 1  (ea /ma )(iw/ w ) 6E (2)

6V 1  (el/m)(i,EdE + 6E x.Q)/ ( Q ) (3) ...

where 11 and.± mean parallel and perpendicular to the background magnetic field,

and the gyrofrequency of species a is defined by '-"',->

S2 -eB/(m.,c). (4)Qa a1

We note that the frequency wJis defined in the proper frame of the plasma (the

frame in which the background plasma is at rest) and that the frequency measured

by an observer moving through the plasma with a velocity U is (J'= 0 k.U, where

ki s the wave vector.

The current density, defined bv

d J Eanaea6\ (5)

where na is the number density of species a, is

4
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22 2]E UW/4.. [w-fj6J =(iwI47r)(W1, /(j +E1 aiIf) [w I~d-

2j/W _Q2)A X 6.

+(/f[ ~ bQ /( 2 Q 2 ] E (6)

where -

2 2 (7)pa 4 7rnaeg /MCI
PC

is the plasma frequency of species cc, the plasma frequency is

2 2()

A .

and b =B/B is a unit vector in the direction of the field. Inserting Eq. (6) into the

j combined Ampere-Faraday Law -

%2- 2 2
Vx(V x 6E) =(41riwj/c )6 + (W /C )6E (9)

we obtain

VX(V x 6E) f 6E f 6E fb 6E (0

where

2 22 2 2

Cp - (Wd Ic 2 ) [ lF- ~~Pa(p2 -
9 a (12)

E ij 2 E 2p(( (13)
H p

Our approach will be to write the differential equations in a homogeneous

background plasma. To do this, we assume that the magnetic field is

and

5'
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F. VP-p
Pi" N %.o'

a/O y- 0 (15)

and that the coefficients f are constant. Eq. (15) limits the subsequent analysis to

two dimensions; this approach sacrifices generality for the sake of clarity. The

assumption of constant magnetic field is consistent with the nature of the space-

craft interaction; the spacecraft is a small object in a large scale (on the order of

one Earth radius) magnetic field. The assumption of constant E, which implies

that the number density is constant, is not very good; the density changes by or- , "

ders of magnitude in a large region occupied by the spacecraft wake and perhaps ."'

in a smaller region in ram. As a result, the detailed results of wave propagation 7

will be limited to a region outside the strong density gradients near the spacecraft.

It is not difficult to generalize our differential equations to variable density, but

the possibility of solving the equations analytically appears to be remote. With

these assumptions, Eq. (10) becomes

z z x x z -p E x  H y'
-O( E- 6 h H E (16) --"'-

( 2)019 2a2 6E C 6F (17)x z y H x y - -

O (a6 : 661: 6i: (18)
x z x x 7 z

where 9. means 009.. Using the Faraday relation

60 13n -i ,6 v  -'r (OF.× - a 6 E (19)

where 6 mean &o ,t, Eq. (16) through (18) can be written

(ic ,)'6 B -, CO0l: - 1f 1 " (20)
V

2 - 6F t ' (21)-X 7 I' v ttxI_.

(iL ( 1 C 61 . (22)S \" * (I 7 """"'%

t:qs. (20 and '2) %,n e ((<o( ine ] to yild" "

[a:,2  - O E(}, - (2OE -V' !o O : 123)

'S. . b

V.*~ '

?6
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or, because

(c/ig..)OzdE = -613* (24)

[a2 2 -% 2) \..(EI ~ fO E]h6BY 6H6B (25

Similarly. Eq. (2 1) can- be written (after differentiation with respect to z)

49~ )6B )JB+ (26)

where Faraday's Law has been used to eliminate derivatives of E.
For future reference, we should like to state that Eqs. (25) and (26) can be . .

rewritten in the form .*

[8z (EPIE 0) x f P E H (I + 0 Ox)f (27)

(49X 4 z 4EP)8 EHar (28)

where or and fl are defined by U

e (Q + i E 613 - ( )E B (29)y (4H/EOd

(I f- / C/O )dB x + (C H/ E 0dB.Y (30)

Eqs. (25) and (26) or Eqs. (27) and (28) are a pair of coupled second order 6

partial differential equations that govern linear waves in cold quasineutral plas-

mas. It is instructive to consider the low frequency limit of these equations. In

the limit that ( -&- 0, it is easy to see that

2 2 2/ 2C P -(Wd /C M(lc VA )(31)

where

VA BhiJ(47rp) (32)

7 .
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.t 'e

is the nonrelativistic Alfven speed, and

E (47riti/cl)Z n e 0. (33)
II aa 

because of the quasineutrality of the background plasma, which we here assume.

In this case, Eqs. (25) and (26) uncouple, and can lie written

(E 1 /C 0 O u
6 ~ 0 (34)

x az f' 16ix 0.(5

These can he recogni7ed as the Alfven mnode and fast mode, respectively. The

Alf%-en mode propagates approximately along the field. while the fast mode propa-

gates isot ropical ly.

J(Im. (25) and (26) can he reduced to a single equation:

2a~ a9 2 ~ EoO2  2

2 le ~l 2)l 0(6
+ C 0 x 1y 0(6

Eq. (36) is a single fourth order equation governing cold plasma waves.

3i. 11E C:11 %H %CTIEISTICS GOVERNING; VI'I [PROPAGATION

By a standard mathematical procedure, the characteristics of the differential.

Eq. (36) can be determined by solving a first order partial differential equation

Q(VO& 0 (37)

* 5
(cf. C'ourant and Hlilbjert, 632 )

53. Courant, R. , and flihert, D. 01962) Methods of Mathematical Physics (Vol. 11).
Interscience, New York.

'I. 8
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In the case of Eq. (36). the characteristic equation is

($2 +.02[0' - (yIo)'0 2 3= 0. (38)

There are two solutions for characteristic surfaces:

* 2 200x + 4z= 0 (39)

and

S ( P)
2  (40)

Eq. (39) yields only imaginary surfaces. In the terminology of partial differ-

ential equations, it means that the problem is elliptic. Physically, it means that

the waves associated with these characteristics propagate more or less isotropic-

ally. An example of completely isotropic propagation is the fast mode wave, de-

scribed by Eq. (35). Because of the isotropic propagation, the wave amplitudes

can be expected to fall off rapidly from a confined source. The falloff for fast
2

mode waves is 1/r . While the falloff will be less rapid for more anisotropic -

wave modes, it can be expected to be significant.

Eq. (40). on the other hand, has real or imaginary characteristic surfaces

depending on the wave frequency. For frequencies for which the characteristics

are real, the problem is said to be hyperbolic. The waves associated with real

characteristics do not propagate isotropically; they are subject to shocks and dis-

continuities. In this linear problem, the shocks or discontinuities propagate only

along the characteristics, as do any discontinuities in the derivatives.

Even when Eq. (40) has real characteristics, there are real and imaginary

characteristics in the same equation. The effect of this coupling will be examined .-.-.

later when we obtain explicit solutions. Except to the extent that the waves asso- .. .-

ciated with imaginary characteristics are driven by waves as ociated with real

characteristics, they will not be treated in detail in this paper. Such waves would

be worth a separate investigation.
The solution of Eq. (40), obtained by the method of characteristics, is -

constant along the surfaces defined by

dx ±Vc + C)dz. (41)P 0

The coefficients c and Cp can each he positive and negative as a function of fre-

9-

%° -*..



J.* % * -e

V quency. The condition that the characteristics are real is b4.%

p((w) /IE(() > 0. (42)

For a plasma composed of a single type of positive ion, a simple analysis gives

the signs of fPande0

0 < (J<QD ; ep< 0

Q i < < QLC;EP >o
Q LC < *< -e ; E < 0

QU < J<Q ;6 >0
e UC P

<W < to <>0

Here. 9. and Q represent the ion and electron gyrofrequencies, while

~UC L =(1/2)[Qe + i2±[Q 2 i+p2 ~*)

+44pe 2 Api2 (3

are the upper and lower cut-off frequencies. Q and are just the zeroes of
E.C

Table 1. Frequencies for Which There Are Real
Characteristics

0L < (i < Qe real hyperbolic

<e W < Q imaginary elliptic

~ LJ "'~ uc real hyperbolic

Q < W (imaginary elliptic
_ __ _ _ I _ _

10



Based on these results, the frequencies for which there are real characteris-

tics can be determined (Table 1). We have tacitly assumed the ordering "
e << W. 2 , typical of the low Earth-orbit environment. There are three re-

gions that can support shock-like disturbances: (1) Alfven--below the ion gyrofre-

quency. (2) whistler- -between the lower cutoff frequency and the electron gyrofre- r
quency, and (3) upper hybrid--between the plasma frequency and the upper cutoff

frequency. In these regions, the angle between the characteristics and the magne-

tic field is%

9 = ±tan- ° ) .  (44)

The angle 0 is shown in Figure 1 for a plasma typical of low-altitude Earth

90 ..

60

w - p .

o

0

: .. .- .- * °

1 102 104 106 108 010

wSEC-,)

igure 1. Thf. \isiA PeI r-i W ee t he Char i'e rist ics aind the \1 a !net ic%.%-
Field, Gi%-p F unction of \Ik iv( I rorwtenoc%-, for a Hyvdrogen PIasn%
With n 10T,0-m- and ii o. i

MW
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4 .

orbit: a hydrogen plasma with n 10 cm and B 0 . r

frequency, the three curves represent the characteristics associated with the Alf- low

yen, whistler, and upper hybrid regions. At very low frequencies, the angle is

essentially zero, the well known result for Alfven waves: Alfven waves propagate

only along the field. The angle broadens as the frequency increases and becomes .

900 at the ion gyrofrequency. This behavior repeats above QLC: the angle is zero

at Q LC and increases to 90 ° at the electron gyrofrequency. Above the plasma fre-

qucncy, the behavior is reversed: the angle is 90 and decreases to zero at jUC"

The discussion of the behavior of the waves with respect to these angles is deferred

to later section.

3.1 I'rojgati ,n ofJDi ,'u,,uili,-

The above discussion of the existence of discontinuities originated with the

formal mathematical treatment of the characteristics, which is quite abstract at

best. The present section is designed to show the relation of the characteristics

to the discontinuities. The treatment is not general, but is much more direct and ,

physical.

To treat discontinuities, we start with Eqs. (16) through (18) for the electric

field components. It follows from Eqs. (16) and (18) that

-9= (- tE, Ex t f Ey) + 0z(C 0 6E z ) 0. (45)

This is a divergence equation. Discontinuities can be treated by integrating over

a Gaussian pillbox surface enclosing the discontinuity and using the divergence

theorem

f- Ad3 x n ida. (46)

For a jump discontinuity, Eq. (46) shows that the normal component of the vector .- '.

A is continuous: .

[A 0. (47

The bracket notation is defined by

S[Q]Q 2 -Q 
(48)

where Q is any quantity and I and 2 refer to the two different sides of the discon-

I tinuity.

....... .,

,~~~~~~~~~~~.. .. . ....... .-.- ,. .-......-.... ".'..".-,,' " ".• - ... ". .".*,-" -. . .. . . . . . . . . . ..
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PC.P* o *%,°

Applying this method to Eq. (45), we obtain ".

nx[-Epdl' X Hd y) n[E 6E 0. (49)
Z 0 Z .

Assuming that the coefficients f are continuous, we have

-n f, [61 ] + nxEFI [6:y n EO[ 6I:] = O. (50)
X. X .z 0

In a similar manner, it follows from Faraday's Law (see Eqs. (19) and (24) that ..,--..--.,

n [6-:x] - n[6; 0 (51) -

0 . ] . (52)

The only solutions of lqs. (50). (51), and (52) for which the electric field discon-

tinuities do not vanish are given by

% -" n o 0 (53)

or

II f /( 0 / l,)n . (54)

The normal vector is perpendicular to the surface of discontinuity, and, by

lq. (44), perpendicular to a characteristic surface. It follows that any discontin-

uities in the electric field must lie on a characteristic surface. It further follows

that there are no discontinuities at all unless the characteristics are real.

Since the methods developed here use the same assumptions as a more ortho-

dox plane wave treatment of plasma waves, it is to be expected that the important - .

features should be the same. This is the case in several respects. In particular, -

the characteristics can be identified as the resonance lines of the plane wave pic-

tue,. The purpose of this section is to provide a physical picture of the charac-

teristics as resonances to aid in the development of the idea of the characteristics

;i i carrier:i of discontinuities.

Tie dispersion relation of cold plasma waves car be obtained from any of the

13
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principal equations: Eqs. (16). (17). and (18). Eqs. (27) and (28). or Eq. (36). It

is convenient to write it in the form

- 4 2
D(w, k) = a/k + b/k + c = 0 (55)

where the coefficients are defined by 
V- -

a 40 (C + 2 (56)

0. P. H

b = 24E0[CS E p H)i2

bos VI + (C )sn 2 / 2(57)
0 P x+( 0 E P P H~

c =  E0Cos2 - f sin2  (58)

and X is the angle between k and B.

To investigate the relation of resonances to the characteristics, we inquire

about the behavior of the phase and group velocities when the wave vector is per-

pendicular to the characteristics. If k is perpendicular to one of the characteris-

tics, defined by Eq. (44). then

2 2
tan P= l/tan 0 = /C (59)

so that

c 0 (60)

which shows that the characteristics are resonance lines (see Stix. p. 14) and

p2 H2)/ "'"ii

b = 0 (C 0 p C - f E+ C). (61) .....
0 0 P-H -0°

Then the roots of the dispersion relation are

I/k 2 
- 0 (62)

and

2
1 / k - b I a . ( 6 3 ) - -" -
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We conclude that when k is perpendicular to a characteristic, the associated wave

vector, given by Eq. (62). is infinite and the phase velocity is

Vh = w/k = 0. (64)
ph

Let us pursue the same line of thought with the group velocity. The group

velocity is defined to be (

g -- oVg = (OD/Ok)/OD/O w). (65) 'Oo..,:.

The numerator is

OD/Ok = Dk(OD/Ok) + (9, /k)(OD/qr) (66)

where the unit vectors ek and eg, are parallel and perpendicular to k, respectively.

Evaluated at c(Vf) = 0, so that k is perpendicular to a characteristic,

V 2b/(k 3 Oc/8w) 0 (67)gk

Vgq= -(Oc/3/)/(kOc/Ow) 0 (68)

so that the group velocity vanishes. At the same time, the group velocity is along

the characteristic

V= -2b/(k 2OcIv) 0 0. (69)

From this. we may draw a physical picture of the role of the characteristics.

Plane waves emitted by a localized source, for which k is perpendicular to a char-
acteristic, do not propagate across the characteristic. Both the phase velocity

and group velocity vanish, and so the waves may accumulate along the character-
istic. For a sufficiently steady situation (long-lived source plus steady back- -

ground plasma), the waves may build up to any arbitrary amplitude within the con-

text of the linear approximation. Because the points in space just across the char-

acteristics are not causally related to those on the side occupied by the disturb- "
an(e, this disturbance may form a shock wave of arbitrary amplitude. Since the

plane waves are supposed to extend an indefinite distance from the source, the .-

shock wave can extend to large distances from the source. "

5515
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From the above discussion, we can make clear what we mean by "shock-like

disturbance," a term used throughout this paper. An observer passing through a

characteristic or resonant surface associated with a particular frequency would

measure a sudden jump in the power at that frequency: the power would be zero on

one side and finite on the other. However, since the characteristics themselves

are frequency-dependent, the disturbance associated with a band of frequencies

has a finite width: the medium is dispersive. Such a disturbance is quite unlike

the Cherenkov cone or sonic boom associated with nondispersive light waves or

sound waves (or fast mode waves, for that matter); these shocks show a sudden

jump in power across a single shock surface at all frequencies.

Eq. (69) will be important in the analysis of analytic solutions. It can be

written as

Vgk/Vglj " = V( e E P ) E,/k2  (70)

where

S (E0  - p2 E 2 )/(E 0 + OE). (71)

From Eq. (70), it follows that when e,_ < 0. the group velocity is inside the char-

acteristics, while when f,, > 0, the group velocity is outside the characteristics.

"Inside" and "outside here mean "toward the field direction" and "away from the

field direction," respectively. This distinction will lead to two separate classes

of shock-like disturbances caused by spacecraft corresponding to spacecraft ve- ,.

locity essentially across the field and along the field, respectively. There will

also be two different ways for waves excited by spacecraft to spread: along the

field and across the field, respectivelv.

The results of this section can be illustrated in the limit of low-frequency

waves for which solutions can be obtained analytically. We state the following

without proof. In the limit of low frequency, the characteristics are determined

by the equation

2• 2, 2. 2-,

[0J2 _ 2, 2 1B 0 (72)
.gm 

x A Y

where the veometric mean frequency (see Stix, 1 p. 32) is defined by

" , _Q (73) -• z~m e "-i.: 'N

16
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The phase velocity is

21 2 2 2 lag 2 )  2'..
C 2 /k 2  VA 2 [cos 2  

- ( 1w sin2 @]. (74)
A gm

The directions of the group and phase velocities are related by

tan jjV -(, 2 /W, 2) tan 1P. (75)
g gm

The square of the group velocity is

g 2  2 [cos2  2 w 2 ) 2  ]/coS4 @g. (76)
V V Cskg Wgm g gi Cs(6

The phase velocity goes to zero at

tan ji t Cimi (77)

and the group velocity goes to zero at

tanlP = t Io/jg m .  (78)

Because the angles between the characteristics and field are - -

t tan- (IJ1 ), (79)

the main results of this section follow easily. When k is perpendicular to a char-

acteristic, the phase velocity is zero [Eq. (74)], the group velocity is along the

characteristic [Eq. (78)], and the group velocity is zero [Eq. (76)]. The phase

and group velocities are shown in Figure 2. along with the characteristics. We

show w/hg m = 0. 2 for purposes of clarity. In fact, the low-frequency approxima.

tion used requires w<< .Q or w <K ,'(mefi) - 0. 023. The magnetic fieldgm e 1

in the figure is vertical, as indicated by the arrow.

We note that Eq. (76) is different from the results illustrated by Musielak. 2

His low-frequency group velocity loci do not go to zero at any angle.

17
,...... :..



- - I - - . -%

Fi "are 2. The : i s nd Group \elocit je of Low Frequency Plasma
a%:Ve s, ( iVen -IS Functions of Anode With Respect to the Mla netic

Field. The direct ion of the mmnetic field is indicated by the arrow.
The chatracteristicS ,ire aV-'o plotted. The nnle b-etween the charac- L7 %

teristics aind the marnetic field is exaggerated for clarity.

%kith the discussion of the characteristics and the propatlation of (tiscontinui-

ie~ ai ta;ck" round, we now turn to solutions of tile equntions. It is well known

fhA equation.s SUCh as, qs. (25) and (26) or (36) can t,e -so]lved by the method of

r'rsi~'waes(see Courant and Htilbert, ('Chap. VD). For the present pur-

poses , we wvill find approximate sltosof Eqs. (27) aind (28). To (to this. we

look fr -olutions of the form

[6,(U a (,V) d(n)(,J)( n(,U 1/ (80)

18



=E n = 0 6 (n)( #)bn(,U./) +  ( ) /)dn(,U. V)) 8 ), ° -

where and V are the characteristics .--

Z + (O Epf )x (82).,. '" "° ',

-- z /4-) (83) -P I

0 %-

[see Eq. (41)). In Eqs. (80) and (81), 6(0)(x) is the Dirac delta function, 6(n)l(x) i  2l

is its nth derivative when n <0. and -.

(n)(x) xn/n! x > 0-"-

=O, x< 0 (84)

when n > 0. B3ecause of the Fourier transform in time, the delta function indi-

cates a source oscillating at frequency (J. Because of the form of the expansions ""'-

(80) and (81), the disturbance is assumed to vanish outside the characteristics.

The results to be derived below hold only for a source at rest in the proper....'

frame of the plasma. This restriction arises because of our treatment in config-- •.

uration space rather than Fourier space. While the Doppler shifts associated ,..

with movint, sources are easilyv treated in Fourier space, the reversion to config- -:_ .-o

uration space represents an intractable analytical problem. It is possible to treat-:{ .-.

it numerically, however. Remarks about mov-ing sources are deferred until later : -. "
sections..

The treatment that we have Outlined does not properly treat the source cur-
rents associated with the spacecraft interaction that cause the fluctuations. To do

=0 0 (84)

wohern wou.decuse ofpict the rentaomintme the dltati ntisonr "-di'"

tecrts asre sciaing at\rqendx lny wt Bea susonh fr o fthe expfiasions -"''--'

qui(80rad (81),e the• ditubnc i'ssme o ans otsd te hrateitis

uraionspacetther of hans F(urie space. Wileq the) dpr shi)ftsloassocitedeu-

ith toe ourctae einteatedonFouierdspac the reersion tola onfig- ..

it n rl o 0 (8)
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(1 + EI )[b. I 2 (OM OL,)bi 2 (k 6,)b 2

+E b. E Ha. 0i> 1 (87)

-ti ) 0 ava 2 0E H P~)(.9, - Ov)b 0 =0 (88) '

(4fH/ tp)bj + aj i- 20E HIE p)(&,, - av )b i 1+ .9' aa i 2

fE a fE b. + ( v) b-1i>1(9i -2 Hi-2 Cp ''''b 2  i >1 (89

The recursion relations for cn and d nare entirely similar and can be obtained by

interchanvine a and c, b and d, and p and Vi. To specify the solution, we choose

a (0. V) =1 (90) *

a (0,. V) =0, i > 0. (91)

This choice implied that Ct is a delta function at /1 0, V 0. The meaning of the ..

solution with these initial conditions is that it represents the manner in which the

disturbance that results from an oscillating point source propagates. The solu-.

tions for these initial conditions are

a0 = (92)

aI V (93)

a9  (Il/2)(t i)
2  (94)

(l/3!)( e,, v)3 -f f(F
2  (95)

0

11 =0 (96)

1), 0 (97) lo

1' 0 A
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b - [ f/(4 + f)] (EV) (99)
3 PHO0 P *

b4 f [(l/2)(eV) + (2e0 P + 3 2c + Ep)] (100)

where N

(t 0 P Ep E E )/(0+ Ep). (101)

From these terms, it is possible to describe the nature of the solution. The delta-

function

= (I + C.p/Eo) By - (CH/ 0) dBx = (g) (102)

lies along the characteristic line p = 0, that is, along z .- I(E£p)x. There is

no corresponding delta function in .8- (1 f /'0)dBx + (EH /C )6B There are,
P 0 x H 0 Y*

however, delta functions in both 6B and tB x .
y x

The coefficient aI represents the jump in ef across p = 0. This jump, which

is initially zero (because of our choice of initial conditions), .i'ows linearly with - -

distance away from the source. Aflain, there is no jump in fl, but there are

jumps in both 6B and 6B x . The coefficient a2 represents the jump in the first
y2

derivative of ; it grows quadratically away from the source. The jump in the

first derivative of 0 does not grow quadractically near the spacecraft, however.

Eq. (98) shows that the jump in the first derivative of g is discontinuous, even at

the origin. -"-

The nature of the solutions is that of coupled waves. The coupling, as men-

tioned in connection with Eqs. (34) and (35), is determined by fH" When fH goes . -

to zero, the solutions for the a and b are
n n

a = (E )n/n! (103)
n P

h =0. (104)
n

Summing the series (80) and (81), we have

= 2 O __ Vj ((n! )2

nl= 0 P

2J0 [V(-2Fpv] (105)

*21 S
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where J0()is the Bessel function and .

0i~. (106)

The factor of 2 in Eq. (105) appears because of the contributions of the c n in

Eq. (80). Eq. (105) is the well known fundamental solution of Eq. (34).

From this discission, it appears that the first few terms of of are the same as

cc= J0 [jI(-2,E*Mv]. i* < 0 (107)

and that modifications appear because of mode coupling! in a 3, b 2 P and higher order

terms. The former result is easy to prove. By eliminating the low order terms

in the recursion relations. so that they reduce to

(+ fe0 /C )b + f H ai 2 + 0 (108)

a i- 1  (H /e P)b i- O + P a.2 0, (109)

one immediately obtains

,91 aji _ IE *ai.+ (110) :c

so that Ce is

C(= J 0 [j(-2e*Mv)] + . * < 0(1)

where the ellipsis represents the remaining terms that arise because of the cou-

pling.

In contrast to the low-frequency Alfven waves, the solution for higher fre-

quency waves depends on the sign of f *. If I* > 0, it would appear that

a- 10 [j 2£F*pv]j+ E* ., > 0 (112)

where 10(z) is the modified Bessel function. The asymptotic form of Eq. (112) for W
large arueument is

4. 22
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V(27r') . > 0 (113) -'

where . -2 ,i.pp which would suggest an exponential increase in the wave ampli-

tude with z.

Swuch exponential behavior presumably does not occur for the following reason:

In Eq. (70), we saw that the sien of C* determined the side of the characteristics

upon which the waves could propagate. If C_ > 0, the waves propagate outside

(away from the field) of the characteristics, while the form of Eqs. (80) and (81)

assumes that the disturbance propagates inside and vanishes outside. The intui-

tively correct result is obtained by replacing the delta functions of Eqs. (80) and

(81 (-)_ p) and 6(n)(-y) if , *> 0. With an assumed solution of this form,

the siL'f of 11 or V (but not both) is flipped in each expansion with coefficients a n
rand c . The result is that

ii:0. ,.'-•* -

. ~~ o =: J [V (-2 ,,,U )j , . . . , > 0 (114).- -. .--- - "

.. 0

th.t i.,. the solution is of the same form as Eq. (111) but vanishes inside the char-
i ;,~ct Cristij(s. 

.- -

The Iwhavior of 4E., in regions where real characteristics exist, is shown in

I',,ure 3 for the same low Earth orbit conditions as Figure 1. Note that E, < 0

in the Alfven and whistler regions and C* > 0 in the upper hybrid region.

It should he noted that the correspondence of "inside" and "outside" with the

sign of 4E was a purely local result; it did not determine whether the group veloc- ,

itv was always inside or outside of the characteristics. Because of the compli- %

cated nature of the group velocity loci, and the fact that the group velocity along or -

across the field is not related to 4E such a determination would presumably have ._-

to come from a numerical search. So we are faced with the following alternatives:

Either our correspondence is correct, or the wave amplitudes can grow exponen-

tially with distance near the spacecraft. While the existence of growing waves

would he surprising, it is not impossible. Even though the driving I0 term grows ..-*.' .

rapidly near the spacecraft, the remaining terms could easily conspire to reduce

it at great distances. Because of the hyperbolic nature of the problem, there is no OM -A

boundary condition far from the spacecraft which can be used to eliminate this so-

lution. The only apparent constraint is that the asymptotic wave amplitudes are

nondecreasing. This is essentially an energy conservation argument: If the asymp-

totic wave amplitudes continued to grow, the steady source could not provide suf-

ficient energy to sustain them. Nor could the cold plasma provide the energy, as

it is known to be stable. It would be a worthwhile exercise to look for such waves;

23
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Figure 3. The Parameter e, Plotted as a Function of Wave Frequency. The
properties of the plasma are the same as Figure 1. In the Alfven region (w<
2 x 10 3 sec -1) and the whist er region (105 < (a < 7 x 106) f is negative. In the
upper hybrid region (8 x 10 < (a) E*, is positive

they could provide a source of extremely rapid spatial wave growth near the space-

c raft.

Several remarks should be made about the nature of these solutions.

(1) Despite the fact that the solutions are analytic, they can only be regarded

as qualitative; they are presented only for the purpose of identifying typical physi- '

cal features.

(2) The solutions are only two-dimensional; solutions can change significantly

,, when the dimensionality of the problem is chanced. The best known example is

24

* .- * o°I
'

.....

. A.*.



,V N .T -

light: three-dimensional solutions are delta functions, while two-dimensional solu-

tions are Bessel functions. While both have sharp wave fronts, the two-dimen-

sional solutions have trailing wakes entirely missing in three dimensions. '-°.

(3) The solutions of this section are for delta function disturbances in the %

magnetic field. A better physical description would be the solutions for a delta
*function current source. (For further details. see the Appendix.

(4) The squares of the results of this section represent the spectral power

density of the fluctuations resulting from a two-dimensional source stationary in

the proper frame. For applications, the power spectral density should be calcu-

lated for specified current sources (see Appendix).
, ..--.-.--'.

5. STEAD" PLASMi STRICTIIRE AROUND A MOVIN(; SOURCE

The present section is somewhat outside the main line of development and can .""

be omitted on a first reading. The purpose is to develop a formal method for cal-

culating the steady plasma structure around a moving source. Because of the in-

tractable analytic nature of the result, we have computed results only in two

simple cases. However. these cases are instructive and may help the uninitiated

reader to make contact with the subject. The formal results include the entire

steady radiation field, which has contributions from waves of all frequencies. As

such, it should be able to serve as a useful starting point in future investigations. __.'

In contrast to the rest of this paper, the results of this section are fully three-di-

mensional.

The problem that we wish to investigate is the plasma response to a source of

current moving with constant velocity, U. Let the source be characterized by a

charge density, 17 , so that a point source can be represented by

J = r7t9= U6(x - Ut). (115) -

We wish to use this source current to calculate a Green's function, and so have

chosen 17 =1. The Ampere-Faraday Law is

Vx7 ( x 6 E) = 16i6Ej (47riti/c2)M (116),-'.,.

where the f represent the coefficients defined in Eq. (10). Without working out
the details, one can see that the ceneral form of the spatial Fourier transform of "

Eq. (116) is

A.. 6E (47riw/c 2  117..-).
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where A is a matrix whose elements depend on rand C .. (Wd). The solution for 67'

is

6E. (47rit/c 2 )A.. 1J (1815

*where the inverse matrix A 1 is given by

A.- a..(G, Z)ID((w. T). (119)

Here, the a. .(. k) are coefficients resulting from the inversion; they depend on wiii
through the i ((J.). D (wj, k) is the dispersion function; the dispersion relation is

13

D (G. k) 0. The Fourier transform of the Green's function for this point source .-

is 5

G.(ti, k) (47ricw/c 2 4a.((J,k)D (,)J(w, T

where J (W k) is the Fourier transform of the current density given by Eq. (115)

and is ,riven explicitly by

(J.w k) LU.(2n'J( -r k U). (121)

Then the Green's function is

G(t, d~ kd= (W k). (122)

After some easy steps, the Green's function can be written symbolically in the

form

(ix - L 0 d k e F(k. (- 'Lt) ID (k U. k) (123)

where 6i is :in operator defined bly

[U (2ir 2). (124)

Nw', t vt depends on L . througrh the dependence of thee..j onw. It is a comnpli- Pw
'1 juntion of differential operators, Its evaluation nomlyivle.oe

tevic- of operators.

Several remarks about Eq. (124) are appropriate:

26



(1) The wave pattern is stationary in the frame in which the source is at rest.

(2) There are two principal pieces to the Green's function: the operator 0. and

the radiation integral

R f LdJk exp(i (7- tt))] /D(U . k). (125)

(3) The radiation integral carries the fundamental information about the ex-

pansion of the wave- phase speeds, group speeds, characteristics, and disturbance

topology.

(4) The details of each wave amplitude are determined by the operator 0i.

(5) R is simply the spatial Fourier transform of the inverse dispersion func-

tion.-.-

(6) R Aepends on all wave frequencies because of the Doppler shift, repre-

sented through the dependence of D on k'U.

Eq. (123) is difficult or impossible to evaluate in any general way. We would 4f

like to illustrate its use through a simple evaluation of R for two special cases:

(1) fast mode waves, and (2) MHD Alfven waves. To do so, we shall drop all con-

stant factors and derivatives, which are inessential.

(1) The fast mode dispersion relation is

2 2 2 (126)
D (i.k) W ~k VA(2

Al

so that

- -- 2 2 2
D(k U, k) (k-.U) k V (127)

To proceed, let U (Ux, 0, 0) so that the velocity is perpendicular to the field.

Then

D(k U, k) k (k + k 2 2V 1). (128)x y z )/UIA

In carrying out the transforms in Eq. (123). there are two cases to consider. If
2 2

U /V > I. D has two real roots for kx . Carrying out the transform in the

usual way, we obtain

B-1v 2 / U2 /V2 1)y2 z2 if2 +z2 <x2 (U2 V2R "lI[x2I(U2/VA 2 -1) -y2 _z z]ify2 z2 < x2/(U2/VA 2 -1)

=0, otherwise

27 *.
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This represents a fast mode shock for the case that the source speed exceeds the

Alfven speed. The disturbance vanishes outside the shock cone, shows a sudden - -

jump at the shock cone. and is nonzero inside. This is just Cherenkov radiation

in a cold plasma.
2 2 -. .

If U /VA < 1, there are two imaginary roots of k x  In this case, the radia-

tio integral is

[x2/ VA 2  21 %-

S 21( ,2 /V 2) y2  z2] (130)

This has the same form as Eq. (129) except that there is no shock cone.

(2) The MIID Alfven mode dispersion relation is

D(ti, k) ( (k vA) (131)

-o that

I . " (' -. )2 - ( O-A)2 (132)
DO,. t. k) (k* I) (k.V A)(32

A ith the velocily apain in the x-direction

2 2- 2 2
I)(k.U, k) kxU2 - k VA  (133)

Evalduation of the integrals then leads to

R (y)[6(x f UZ/V A) - (x - UZ/VA)]. (134)

This solution is just two delt:i functions in opposite directions along the field: they' ~ ~~~~~-- I ( A .- ''k-

are the .,lfv(n winys for a point source. They are tilted by an angle tan (U/VA)
L ~3A

with respect to the field and lag hehind the source.

h. % lj'i.i: % Ol S J%' I") .TO ' WEH iF T.."

Up to this point, we have developed several apparently disparate approaches

to our problem. It is time to try to unify them into one coherent picture. The

main difficulty we face is to incorporate the motion of the spacecraft into our re-

sults. Aside from the last section, the results are valid only for sources which

28-
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are stationary in the proper frame of the plasma. For such a motionless sourcee )

the methods outlined above should provide a detailed accounting of the behavior of

waves and disturbances propagating away from the source.

What is required is a generalization of the characteristics that applies to the

wave field of moving sources. These characteristics should be the carriers of
discontinuities that originate at the spacecraft. The spatial methods that have

been developed above are not particularly helpful for the following reasons: The

characteristics in the proper frame do not depend on the group velocity because.

as we have seen, it becomes zero at the characteristics. On the other hand, the

spatial characteristics in a flowing plasma must have some relation to the group

velocity. Another way of looking at it is that the angle of the characteristics in

the frame of the moving source must be determined by the ratio of some speed in

the problem to the source speed, U. This is true in any frame; if the source is

stationary in the proper frame, the source velocity and the group velocity associ-

ated with the characteristics are both zero.

The appropriate generalization has been known for a long time (see Jeffrey
6and Taniuti, p. 186). If V - U is tangent to the group velocity surface, then the ,.g

direction V - is characteristic:

(V -)'Vo= 0 (135)
g

that is, the convected group velocity is parallel to the characteristic surface. The

construction of the characteristics is shown in Figure 4; we have used the group

velocity of Figure 2 in this example. The magnitude of the spacecraft velocity has . 2,...,.

been greatly exaggerated for clarity. .

The characteristics determined in this way satisfy the usual requirement that
characteristic surfaces be the carriers of discontinuities. This is easy to see

from the significance of the group velocity. The characteristics here are just the

envelope of the group velocity and so determine the limits past which a localized

fluctuation cannot spread: inside the characteristic surface, the disturbance does
not vanish, while outside, it does.

6For further details, see Jeffrey and Taniuti. For the present purposes, it

is sufficient to note the following: Spacecraft velocities are about 8 km/sec or less
while typical group velocities are on the order of the Alfven speed, several hun-

dred kilometers per second or more. Unless there are group velocities less than

the spacecraft velocity, then no new qualitative features (that is, new characteris-

tic surfaces) will occur. In that case, the analysis of this paper can be used to

6. Jeffrey. A., and Taniuiti, T. (1964) Non-Linear Wave Propagation, Academic
Press, New York. ... ,
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Figure 4. Construction of the Characteristics for a Moving Source. The
polar plot is the group velocity locus; the magnetic field direction is indi-
cated by the arrow. The source velocity is indicated by

determine all of the shock-like disturbances. It should be emphasized, however.

that larger source velocities would introduce qualitatively new characteristic sur-

faces and the associated shock-like disturbances; an example is the fast mode

I Cherenkov cone.
In the limit of small spacecraft velocity, it is easy to see the qualitative na-

ture of the changes in the characteristic surfaces and to discuss the nature of the .
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spacecraft interaction associated with them. Let us discuss the qualitative nature

of the changes for two cases: E, < 0 (Case 1) and C, > 0 (Case 2).

Case 1: If the spacecraft velocity is across the field, shock-like disturbances

can occur. Ahead of the spacecraft, the changes will be small. There will still , •

be a well defined characteristic surface past which disturbances of a given fre- . ,

quency cannot spread. The angle this surface makes with the magnetic field will,. "

still be given to high accuracy by Eq. (44). Behind the spacecraft, the changes

are more significant. Because the waves with zero group velocity in the proper rM

frame do not propagate through the plasma, once they are produced, they will form

a trailing wake behind the spacecraft. This is simply a statement of the fact that

there is no characteristic surface in the spacecraft wake; unlike the case of a sta-

tionary source, there are no solutions in the wake of Eq. (133) for 'n, as can be

seen from Figure 4. Even though there are no trailing characteristics, the solu-

tions obtained [Eqs. (92) through (100)] should still be reasonably accurate, ex-

cept that the trailing disturbance will approach zero rapidly but not vanish.

If the spacecraft velocity lies within the characteristics, no shock-like dis-

turbances are possible. For example, if the velocity is parallel to the field, the

disturbance propagates (in the spacecraft frame) ahead of the spacecraft at several

hundred kilometers per second and behind the spacecraft at the orbital velocity

(several kilometers per second).

While the formal results have been obtained in two dimensions, we may pply

them in a qualitative fashion to three dimensions. The application follows easily
from the axisymmetric nature of the actual waves around the field in the proper
frame. There is a two-lobed disturbance field. The dividing line between the two

lobes trails the spacecraft antiparallel to the spacecraft velocity. The leading

edge of the disturbance (ahead of the spacecraft) is a cone whose angle with re-

spect to the field is given approximately by Eq. (44). Toward the sides of the

cone, the disturbance is still sharply defined, with much the same cone angle.

However, the trailing disturbance extends to infinity, urowing narrower at large

distances. A qualitative representation is shown in Figure 5. For the conditions
of Figure 1, this configuration applies to Alfven and whistler disturbances.

Case 2: If the spacecraft velocity is along the field, shock-like disturbances

can occur. Inside the characteristics ahead of the spacecraft, there will be no

disturbance. The main disturbance itself consists of two lobes, associated with

the group velocity, directed across the field .\ gain, there will be a trailing wake.

If the velocity lies outside the characteristics, then there are no shock-like dis- .-

turbances. -,-.-- :,

In three dimensions, the disturbance is obtained by rotatine the two-dimen-

sional result around the field. The result is a conical leading disturbance with a. *•"

trailing wave field. The mnin disturlance is expected to lie between two mirror .-. '..

I
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symmetry cones (for the case that U is parallel to 3) with a smaller amplitude

disturbance extending to infinity in the wake. A qualitative representation is

shown in Figure 6. For the conditions of Figure 1. this configuration applies to .

upper hybrid disturbances.

•.-. .°

Figure 5. Qualitative View of the Three -Dimensional Limits
of the Wave Field for a Given Frequency and e < 0. For
the plasma of Figure 1. this behavior is typical of the Alfven
and whistler regions
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Figure 6. Qualitative View of the Three-Dimensional Limits
of the Wave Field for a Given Frequency and c. > 0. For
the plasma of Figure 1, this behavior is typical of the upper
hybrid region

_-- D"SC. - "-N

We have investigated the properties of waves that are assumed to be produced

as the result of the interaction of a spacecraft with a cold plasma. We have found

that there are three distinct frequency regimes for which the waves can propagate

to large listances from the spacecraft and cause shock-like disturbances. These

waves may be roughly classified as Alfven waves, whistlers, and upper hybrid

waves. In the examples given in the paper, the Alfven and whistler waves are

guided along the geomagnetic field, while the upper hybrid waves propagate across
thf, field.

The question of the production of these waves has not been dealt with. For the -
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purposes of this work, we have simply assumed the existence of a wave source

and have treated the subsequent evolution of the waves. The production of Alfven

wings is reasonably well understood. They result from the steady charge separa- %

tion required to maintain zero electric field, as seen by a comoving observer, in-

side a conductor moving across a magnetic field. The resulting electric field at %

the surface of the conductor then propagates along the Alfven characteristics,

forming steady Alfven wings.

The production of higher frequency waves is not so easy to understand in any

detail. In general, the wave spectrum associated with the spacecraft interaction

should extend up to a frequency

U/L (136)

where L is a typical dimension of the spacecraft. For a spacecraft about 10 m

across, the maximum frequency is about 10 sec -
. If smaller scale structures,

such as wing tips and bay door edges (or, in general any structure with a small

radius of curvature), are considered, then the maximum frequency is raised per- "lo

haps two orders of magnitude. So it appears that wave frequencies as high as the

whistler and upper hybrid regions are possible.

On the other hand, the formal result for cold plasmas is that the spacecraft

interaction produces only zero frequency waves as observed in the frame in which

the spacecraft is at rest, as mentioned in the discussion following Eq. (123).

While there are contributions to the steady structure from waves of all frequencies Ilk

[see Eq. (123)], it is not at all clear that waves will be produced that oscillate in

the spacecraft frame.

This makes clear an underlying assumption of the paper: While the propagation

of cold plasma waves has been treated in some detail, we rely on processes out-

side of cold plasma physics to actually produce the waves. While little is known --

theoretically about such wave production, there are two lines of attack. One is to -.

measure the wave field near the spacecraft. Given a measured source, the pre-

sent formalism describes the subsequent evolution of the waves. The other is to

generate a self-consistent model of the steady state Shuttle environment and ana--I

lyze it for dominant plasma instabilities and again compute the evolution. Both

types of effort are in early stages of development.
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Appendix

The source terms for the wave equations can be introduced in the usual way.

The Ampere-Faraday Law is

7x ( x 6E) -i6E. + (47riti/c2 (Al) )j.
'3 3

where J is the source current. The equations for the field fluctuations are

[02 + (fpI/0)0 2 - ep)6By = fH 6 B x - (47r/c)[(0Jx + (CP IE)40Jz) (A2)

(x2 + .az 2 P)£Bx H Q + C(01 -1 x2)63y (47r/c)azJY (A3)

The equations for the amplitudes a and f are

4.2 _ 2 _ 2£ 1

(4 / c)[- - E )0,P) JX - 6H / 0)zJ (1 Ep f0)( p/C )OxJz)] (A4)

(0, _ O/x 2
2:::

.- (47r/c)[-(,EH/C)OzJx - 1p/0)OzJy (C f /0 )OJz (A5)

.:. ~ ,..
H 0 .0 y *H.,' 2,.,:72.,



In the text, the right-hand sides were treated as delta functions. A proper physi- -____

cal treatment requires that the current density be the delta function source. The
qualitative result is that the expressions in the text must be differentiated with re-

spect to the appropriate variable (for example, z if the source term is z J ) and

then multiplied by the appropriate coefficient (for example, -(47r/c)(Io fEfE) for

the leading term in Eq. (A4)].
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